论文标题

通过反力识别的结构振动的实时响应估计

Real-time response estimation of structural vibration with inverse force identification

论文作者

Oh, Seungin, Lee, Hanmin, Lee, Jai-Kyung, Yoon, Hyungchul, Kim, Jin-Gyun

论文摘要

这项研究旨在开发一种虚拟传感算法的结构振动,以实时识别未衡量的信息。首先,使用物理传感器测量某些局部点振动响应(例如位移和加速度),并使用数值模型扩展数据集,以在实时计算过程中通过整个空间域覆盖未衡量的数量。然后,提出了修改的时间积分器,以使用逆动力学同步物理传感器和数值模型。特别是,使用隐式时间积分得出了有效的反力识别方法。二阶的普通微分公式及其基于投影的还原模型用于避免状态空间形式内更大的自由度。然后,使用Tikhonov正则化噪声过滤算法而不是Kalman过滤。在正弦和随机激发载荷条件下,研究了所提出的方法的性能。在实验测试中,该算法是在单板计算机上实现的,包括逆力识别和未测量的响应预测。结果表明,在非常有限的计算环境中,虚拟传感算法可以在整个振动模型中准确识别未衡量的信息,力和位移。

This study aimed to develop a virtual sensing algorithm of structural vibration for the real-time identification of unmeasured information. First, certain local point vibration responses (such as displacement and acceleration) are measured using physical sensors, and the data sets are extended using a numerical model to cover the unmeasured quantities through the entire spatial domain in the real-time computation process. A modified time integrator is then proposed to synchronize the physical sensors and the numerical model using inverse dynamics. In particular, an efficient inverse force identification method is derived using implicit time integration. The second-order ordinary differential formulation and its projection-based reduced-order modeling is used to avoid two times larger degrees of freedom within the state space form. Then, the Tikhonov regularization noise-filtering algorithm is employed instead of Kalman filtering. The performance of the proposed method is investigated on both numerical and experimental testbeds under sinusoidal and random excitation loading conditions. In the experimental test, the algorithm is implemented on a single-board computer, including inverse force identification and unmeasured response prediction. The results show that the virtual sensing algorithm can accurately identify unmeasured information, forces, and displacements throughout the vibration model in real time in a very limited computing environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源