论文标题
在三维渐近平坦的空间中展开的Fierz-Pauli方程
Unfolded Fierz-Pauli Equations in Three-Dimensional Asymptotically Flat Spacetimes
论文作者
论文摘要
我们利用三个时空维度的庞加莱代数代数的普遍包围代数的商,我们在其上制定了协变量的恒定状态。如此获得的方程式包含用于非交互式,大型高自旋场的Fierz-Pauli方程,因此可以被视为Fierz-Pauli系统的展开。所有基本领域完全彼此脱离。在未截断的情况下,该字段内容在固定旋转下无限地包含每个字段的许多副本。
We utilise a quotient of the universal enveloping algebra of the Poincaré algebra in three spacetime dimensions, on which we formulate a covariant constancy condition. The equations so obtained contain the Fierz-Pauli equations for non-interacting, massive higher-spin fields, and can thus be regarded as an unfolding of the Fierz-Pauli system. All fundamental fields completely decouple from each other. In the non-truncated case, the field content includes infinitely many copies of each field at fixed spin.