论文标题

使用动态运行时行为进行隐私保护应用程序对应用的身份验证

Privacy-Preserving Application-to-Application Authentication Using Dynamic Runtime Behaviors

论文作者

Christodorescu, Mihai, Shirvanian, Maliheh, Zawoad, Shams

论文摘要

应用身份验证通常使用某种形式的秘密凭据(例如加密密钥,密码或API密钥)执行。由于客户负责安全存储和管理密钥,因此此方法容易受到对客户的攻击。同样,由中央管理的钥匙店也容易受到各种攻击的影响,如果受到损害,可能会泄漏凭据。为了解决此类问题,我们提出了一个应用程序身份验证,在该验证中,我们依靠独特且可区分的应用程序的行为来在设置阶段锁定密钥并解锁其以进行身份​​验证。我们的系统在当前凭据身份验证系统的顶部添加了一个模糊的提取器层。在关键注册过程中,使用网络中各个传感器收集的应用程序的行为数据被用来隐藏凭据键。如果在身份验证期间应用程序的行为与注册过程中收集的键相匹配,则模糊提取器将释放服务器的钥匙,并具有一定的噪声耐受性。我们设计了该系统,分析了其安全性,并使用网络中部署的10个现实生活应用程序对其进行了实施和评估。我们的安全性分析表明,该系统对客户端妥协,保险库妥协和功能观察有安全。评估表明,该方案可以以14%的平均虚假拒绝率达到0%的虚假接受率,并花费约51毫秒才能成功验证客户端。鉴于这些有希望的结果,我们希望我们的系统具有实际使用,因为它的部署需要零才能在服务器上最小的更改。

Application authentication is typically performed using some form of secret credentials such as cryptographic keys, passwords, or API keys. Since clients are responsible for securely storing and managing the keys, this approach is vulnerable to attacks on clients. Similarly a centrally managed key store is also susceptible to various attacks and if compromised, can leak credentials. To resolve such issues, we propose an application authentication, where we rely on unique and distinguishable application's behavior to lock the key during a setup phase and unlock it for authentication. Our system add a fuzzy-extractor layer on top of current credential authentication systems. During a key enrollment process, the application's behavioral data collected from various sensors in the network are used to hide the credential key. The fuzzy extractor releases the key to the server if the application's behavior during the authentication matches the one collected during the enrollment, with some noise tolerance. We designed the system, analyzed its security, and implemented and evaluated it using 10 real-life applications deployed in our network. Our security analysis shows that the system is secure against client compromise, vault compromise, and feature observation. The evaluation shows the scheme can achieve 0 percent False Accept Rate with an average False Rejection Rate 14 percent and takes about 51 ms to successfully authenticate a client. In light of these promising results, we expect our system to be of practical use, since its deployment requires zero to minimal changes on the server.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源