论文标题

SEEDBERT:从聚合标签中恢复注释额定分布

SeedBERT: Recovering Annotator Rating Distributions from an Aggregated Label

论文作者

Sampath, Aneesha, Lin, Victoria, Morency, Louis-Philippe

论文摘要

许多机器学习任务 - 尤其是那些从事情感计算的任务 - 本质上是主观的。当被要求对面部表情进行分类或评估个人的吸引力时,人类可能会彼此不同意,并且没有一个单一的答案可以客观地正确。但是,机器学习数据集通常只为每个样本具有一个“地面真相”标签,因此在这些标签上训练的模型可能在本质上是主观的任务上表现不佳。尽管允许模型从单个注释者的评分中学习可能会有所帮助,但大多数数据集并未为每个样本提供特定于注释的标签。为了解决这个问题,我们提出了Seedbert,这是一种通过诱导预训练的模型参加输入的不同部分,从单个标签中恢复注释额定分布的方法。我们的人类评估表明,种子的注意机制与注释者分歧的人类来源一致。此外,在我们使用大语言模型的经验评估中,Seedbert与标准深度学习模型以及与明确解释注释者分歧的其他当前模型相比,在下游主观任务上的表现有了显着增长。

Many machine learning tasks -- particularly those in affective computing -- are inherently subjective. When asked to classify facial expressions or to rate an individual's attractiveness, humans may disagree with one another, and no single answer may be objectively correct. However, machine learning datasets commonly have just one "ground truth" label for each sample, so models trained on these labels may not perform well on tasks that are subjective in nature. Though allowing models to learn from the individual annotators' ratings may help, most datasets do not provide annotator-specific labels for each sample. To address this issue, we propose SeedBERT, a method for recovering annotator rating distributions from a single label by inducing pre-trained models to attend to different portions of the input. Our human evaluations indicate that SeedBERT's attention mechanism is consistent with human sources of annotator disagreement. Moreover, in our empirical evaluations using large language models, SeedBERT demonstrates substantial gains in performance on downstream subjective tasks compared both to standard deep learning models and to other current models that account explicitly for annotator disagreement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源