论文标题
CGOF ++:可控的3D面部合成与有条件的生成占用场
CGOF++: Controllable 3D Face Synthesis with Conditional Generative Occupancy Fields
论文作者
论文摘要
利用图像生成模型的最新进展,现有的可控面图像合成方法能够生成具有某些可控性的高保真图像,例如控制生成的面部图像的形状,表达式,纹理和姿势。但是,先前的方法集中在可控的2D图像生成模型上,这些模型容易在大表达和姿势变化下产生不一致的面部图像。在本文中,我们提出了一个新的基于NERF的条件3D面部合成框架,该框架可以通过从3D面先验中施加显式的3D条件来对生成的面部图像进行3D可控性。其核心是有条件的生成占用场(CGOF ++),可有效地实施生成的面部形状,以符合给定的3D可变形模型(3DMM)网格,该模型(3DMM)网格建立在EG3D [1]的顶部,这是最近基于三平面的生成模型。为了准确控制合成图像的细粒3D面部形状,我们还将3D地标损耗以及体积翘曲损失纳入我们的合成框架中。实验验证了所提出的方法的有效性,该方法能够生成高保真的面部图像,并显示出比基于2D的最新可控制面合成方法更精确的3D可控性。
Capitalizing on the recent advances in image generation models, existing controllable face image synthesis methods are able to generate high-fidelity images with some levels of controllability, e.g., controlling the shapes, expressions, textures, and poses of the generated face images. However, previous methods focus on controllable 2D image generative models, which are prone to producing inconsistent face images under large expression and pose changes. In this paper, we propose a new NeRF-based conditional 3D face synthesis framework, which enables 3D controllability over the generated face images by imposing explicit 3D conditions from 3D face priors. At its core is a conditional Generative Occupancy Field (cGOF++) that effectively enforces the shape of the generated face to conform to a given 3D Morphable Model (3DMM) mesh, built on top of EG3D [1], a recent tri-plane-based generative model. To achieve accurate control over fine-grained 3D face shapes of the synthesized images, we additionally incorporate a 3D landmark loss as well as a volume warping loss into our synthesis framework. Experiments validate the effectiveness of the proposed method, which is able to generate high-fidelity face images and shows more precise 3D controllability than state-of-the-art 2D-based controllable face synthesis methods.