论文标题
玉米产量的预测基于远程感知的变量,使用变异自动编码器和多个实例回归
Corn Yield Prediction based on Remotely Sensed Variables Using Variational Autoencoder and Multiple Instance Regression
论文作者
论文摘要
在美国,玉米是生产最多的农作物,并且一直是美国饮食的重要组成部分。为了满足供应链管理和区域粮食安全的需求,准确,及时的大规模玉米收益率预测在精确农业中引起了更多关注。最近,遥感技术和机器学习方法已被广泛探索用于作物产量预测。当前,大多数县级收益预测模型都使用县级平均变量进行预测,而忽略了许多详细信息。此外,作物区域和卫星传感器之间的空间分辨率不一致导致混合像素,这可能会降低预测准确性。在大规模作物产量预测中,只有少量作品解决了混合像素问题。为了解决信息丢失和混合像素问题,我们开发了一个基于大型玉米产量预测的基于变异的自动编码器(VAE)多个实例回归(MIR)模型。我们使用所有未标记的数据来训练VAE和训练有素的VAE进行异常检测。作为一种预处理方法,异常检测可以帮助miR找到比传统mir方法更好的每个袋子的表示,从而在大规模的玉米产量预测中更好地执行。我们的实验表明,基于变异自动编码器的多个实例回归(VAEMIR)在大规模玉米产量预测中的表现优于所有基线方法。尽管需要合适的元参数,但Vaemir在大规模玉米收益预测的特征学习和提取方面表现出巨大的潜力。
In the U.S., corn is the most produced crop and has been an essential part of the American diet. To meet the demand for supply chain management and regional food security, accurate and timely large-scale corn yield prediction is attracting more attention in precision agriculture. Recently, remote sensing technology and machine learning methods have been widely explored for crop yield prediction. Currently, most county-level yield prediction models use county-level mean variables for prediction, ignoring much detailed information. Moreover, inconsistent spatial resolution between crop area and satellite sensors results in mixed pixels, which may decrease the prediction accuracy. Only a few works have addressed the mixed pixels problem in large-scale crop yield prediction. To address the information loss and mixed pixels problem, we developed a variational autoencoder (VAE) based multiple instance regression (MIR) model for large-scaled corn yield prediction. We use all unlabeled data to train a VAE and the well-trained VAE for anomaly detection. As a preprocess method, anomaly detection can help MIR find a better representation of every bag than traditional MIR methods, thus better performing in large-scale corn yield prediction. Our experiments showed that variational autoencoder based multiple instance regression (VAEMIR) outperformed all baseline methods in large-scale corn yield prediction. Though a suitable meta parameter is required, VAEMIR shows excellent potential in feature learning and extraction for large-scale corn yield prediction.