论文标题
通过非IID数据,知识意识的联合积极学习
Knowledge-Aware Federated Active Learning with Non-IID Data
论文作者
论文摘要
联合学习使多个分散的客户能够协作学习而无需共享本地培训数据。但是,获取本地客户的数据标签的昂贵注释成本仍然是利用本地数据的障碍。在本文中,我们提出了一个联合的积极学习范式,以有效地学习具有有限注释预算的全球模型,同时以分散的学习方式保护数据隐私。联邦积极学习面临的主要挑战是服务器上全局模型的主动采样目标与异步本地客户端的主动采样目标之间的不匹配。当数据分配到本地客户端非IID时,这将变得更加重要。为了应对上述挑战,我们提出了知识感知的联合积极学习(KAFAL),该学习包括知识专业的主动抽样(KSAS)和知识补偿联盟更新(KCFU)。 KSAS是一种针对联邦主动学习问题量身定制的新型主动抽样方法。它通过基于本地模型和全球模型之间的差异积极进行采样来处理不匹配挑战。 KSA会在本地客户中加强专业知识,确保对本地客户和全球模型的采样数据提供信息。同时,KCFU处理由有限的数据和非IID数据分布引起的客户端异质性。它通过全球模型的协助来弥补每个客户在弱类中的能力。进行了广泛的实验和分析,以表明KSA优于最先进的主动学习方法,以及在联合的主动学习框架下KCFU的效率。
Federated learning enables multiple decentralized clients to learn collaboratively without sharing the local training data. However, the expensive annotation cost to acquire data labels on local clients remains an obstacle in utilizing local data. In this paper, we propose a federated active learning paradigm to efficiently learn a global model with limited annotation budget while protecting data privacy in a decentralized learning way. The main challenge faced by federated active learning is the mismatch between the active sampling goal of the global model on the server and that of the asynchronous local clients. This becomes even more significant when data is distributed non-IID across local clients. To address the aforementioned challenge, we propose Knowledge-Aware Federated Active Learning (KAFAL), which consists of Knowledge-Specialized Active Sampling (KSAS) and Knowledge-Compensatory Federated Update (KCFU). KSAS is a novel active sampling method tailored for the federated active learning problem. It deals with the mismatch challenge by sampling actively based on the discrepancies between local and global models. KSAS intensifies specialized knowledge in local clients, ensuring the sampled data to be informative for both the local clients and the global model. KCFU, in the meantime, deals with the client heterogeneity caused by limited data and non-IID data distributions. It compensates for each client's ability in weak classes by the assistance of the global model. Extensive experiments and analyses are conducted to show the superiority of KSAS over the state-of-the-art active learning methods and the efficiency of KCFU under the federated active learning framework.