论文标题
随机不变量子状态的纠缠特性
Entanglement properties of random invariant quantum states
论文作者
论文摘要
根据全球SU($ d $)操作不变的随机多部分量子状态的纠缠属性。随机状态生活在SU不可约代表的张量($ d $)中。我们计算和分析高维度的随机不变和近乎不变状态的二阶Rényi纠缠度量的期望和波动,并揭示了量度浓度的现象。我们表明,有了很高的概率,随机的su($ d $) - 随着单个系统的尺寸进入无穷大的尺寸,不变状态几乎与任何两部分切割相对于任何两部分切割。我们还表明,随机su(2)侵害状态的这种通用纠缠特性对于任意有限的扰动是可靠的。
Entanglement properties of random multipartite quantum states which are invariant under global SU($d$) action are investigated. The random states live in the tensor power of an irreducible representation of SU($d$). We calculate and analyze the expectation and fluctuation of the second-order Rényi entanglement measure of the random invariant and near-invariant states in high dimension, and reveal the phenomenon of concentration of measure the random states exhibit. We show that with high probability a random SU($d$)-invariant state is close to being maximally entangled with respect to any bipartite cut as the dimension of individual system goes to infinity. We also show that this generic entanglement property of random SU(2)-invariant state is robust to arbitrarily finite disturbation.