论文标题
关于力量尾巴的预测
On projections of the tails of a power
论文作者
论文摘要
令$κ$为无法访问的红衣主教,$ \ mathfrak {u} $是通用代数,而$ \ sim $是$ \ mathfrak {u}^κ$最终平等的等价关系。从对$κ$的轻度假设中,我们给出了$ \ Mathcal {e} \的一般结构(\ Mathfrak {\ Mathfrak {u}^κ/\ sim)$满足$ \ Mathcal {e} \ Mathcal {e} \ Circ \ Mathcal {e}结束(\ Mathfrak {u}^κ$具有很小的强支持。作为一个应用程序,存在一个$ \ MATHCAL {e} \ in END(\ MATHBB {Z}^κ/\ SIM)$,该$并非来自$δ\ in End(\ Mathbb {Z}^κ)$。
Let $κ$ be an inaccessible cardinal, $\mathfrak{U}$ be a universal algebra, and $\sim$ be the equivalence relation on $\mathfrak{U}^κ$ of eventual equality. From mild assumptions on $κ$ we give general constructions of $\mathcal{E} \in End(\mathfrak{U}^κ/\sim)$ satisfying $\mathcal{E} \circ \mathcal{E} = \mathcal{E}$ which do not descend from $Δ\in End(\mathfrak{U}^κ)$ having small strong supports. As an application there exists an $\mathcal{E} \in End(\mathbb{Z}^κ/\sim)$ which does not come from a $Δ\in End(\mathbb{Z}^κ)$.