论文标题

确定性混乱与可整合模型

Deterministic Chaos vs Integrable Models

论文作者

Negro, Stefano, Popov, Fedor K., Sonnenschein, Jacob

论文摘要

在这项工作中,我们介绍了分析和数值证据,即具有无限多个自由度的经典整合模型出乎意料地表现出某些典型的混沌系统特征。通过研究在初始条件的较小变形下保守的电荷如何变化,我们得出结论,尽管系统是可集成的,但反向散射图负责这些特征的存在。我们在KDV方程和正弦模型的明确示例中研究了这一现象,并进一步提供了支持此陈述的一般参数。

In this work we present analytical and numerical evidences that classical integrable models possessing infinitely many degrees of freedom unexpectedly exhibit some features that are typical of chaotic systems. By studying how the conserved charges change under a small deformation of the initial conditions, we conclude that the inverse scattering map is responsible for the presence of these features, in spite of the system being integrable. We investigate this phenomenon in the explicit examples of the KdV equation and the sine-Gordon model and further provide general arguments supporting this statement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源