论文标题
动机积分$ p $ - adic的共同学
A motivic integral $p$-adic cohomology
论文作者
论文摘要
我们构建了一个不可或缺的$ p $ - adiC的共同体学,该共同体在反转$ p $之后与刚性的同胞相比。我们的方法是基于binda-park-Østvær的hiodo-kato和log-étale动机的对数野事的差异。如果$ k $满足奇异性的解决方案,我们还证明它与Ertl-Shiho-Sprang的“良好”积分$ P $ - 亚种共同体:我们推断出一些有趣的动机性能和Künneth的公式和$ p $ - aadic-adic-adic-adic-adic-adic-aidic comology of ertl-shiho-s-s-sprang。
We construct an integral $p$-adic cohomology that compares with rigid cohomology after inverting $p$. Our approach is based on the log-Witt differentials of Hyodo-Kato and log-étale motives of Binda-Park-Østvær. In case $k$ satisfies resolutions of singularities, we moreover prove that it agrees with the "good" integral $p$-adic cohomology of Ertl-Shiho-Sprang: from this we deduce some interesting motivic properties and a Künneth formula for the $p$-adic cohomology of Ertl-Shiho-Sprang.