论文标题
Belfusion:行为驱动的人类运动预测的潜扩散
BeLFusion: Latent Diffusion for Behavior-Driven Human Motion Prediction
论文作者
论文摘要
随机人类运动预测(HMP)通常已经通过生成的对抗网络和变异自动编码器来解决。大多数先前的作品旨在根据骨架关节的分散来预测高度多样化的运动。这导致了预测快速和运动发散运动的方法,这些运动通常与过去的运动不切实际且不连贯。这种方法还忽略了需要预测具有微妙关节位移的各种低范围行为或行动的情况。为了解决这些问题,我们提出了belfusion,该模型首次利用HMP中的潜扩散模型从潜在空间中的样本中进行样本,在该空间中,行为与姿势和运动脱离了。结果,从行为的角度鼓励多样性。由于我们的行为耦合器能够将采样行为转移到正在进行的运动中的能力,Belfusion的预测表现出了多种行为,这些行为比艺术的状态更为现实。为了支持它,我们介绍了两个指标,即累积运动分布的面积以及平均成对距离误差,这与我们对现实主义的定义有关,根据与126名参与者的定性研究有关。最后,我们在新的跨数据库场景中证明了Belfusion的泛化能力。
Stochastic human motion prediction (HMP) has generally been tackled with generative adversarial networks and variational autoencoders. Most prior works aim at predicting highly diverse movements in terms of the skeleton joints' dispersion. This has led to methods predicting fast and motion-divergent movements, which are often unrealistic and incoherent with past motion. Such methods also neglect contexts that need to anticipate diverse low-range behaviors, or actions, with subtle joint displacements. To address these issues, we present BeLFusion, a model that, for the first time, leverages latent diffusion models in HMP to sample from a latent space where behavior is disentangled from pose and motion. As a result, diversity is encouraged from a behavioral perspective. Thanks to our behavior coupler's ability to transfer sampled behavior to ongoing motion, BeLFusion's predictions display a variety of behaviors that are significantly more realistic than the state of the art. To support it, we introduce two metrics, the Area of the Cumulative Motion Distribution, and the Average Pairwise Distance Error, which are correlated to our definition of realism according to a qualitative study with 126 participants. Finally, we prove BeLFusion's generalization power in a new cross-dataset scenario for stochastic HMP.