论文标题
基于KTAO3的二维电子气体中的金属 - 绝缘体相分离
Metal-insulator phase separation in KTaO3-based two-dimensional electron gas
论文作者
论文摘要
电子相分离(EPS)源自电子相之间的不完全转化,导致电子特性的不均匀空间分布。在二维电子气体(2DEG)的系统中,通常基于渗透性金属到固定器的过渡识别EPS。在这里,我们报告了基于KTAO3的2DEG中的金属 - 绝缘体过渡(MIT),导电通道的宽度降低为微米尺度。由于金属和绝缘阶段之间的竞争,观察到滞电性 - 温度关系,这是通过磁场调节的。这种依赖大小的MIT效应归因于金属和绝缘阶段的共存和分离。结合了密度功能理论计算,我们提出了一个理论模型,使用渗透理论模拟EPS的动态过程,证明了大小依赖性MIT的机制。我们的工作提出了一个清晰,简单的2DEG平台,以实现金属和绝缘阶段的空间共存。
Electronic phase separation (EPS) originates from an incomplete transformation between electronic phases, causing the inhomogeneous spatial distribution of electronic properties. In the system of two-dimensional electron gas (2DEG), the EPS is usually identified based on a percolative metal-to-superconductor transition. Here, we report a metal-insulator transition (MIT) in KTaO3-based 2DEG with the width of conductive channel decreasing into micrometer scale. Hysteretic resistance-temperature relations are observed due to the competition between metallic and insulating phases, which is tunable by magnetic field. Such a size-dependent MIT effect is attributed to the coexistence and separation of metallic and insulating phases. Combining density functional theory calculation, we propose a theoretical model to simulate the dynamic process of the EPS using the percolation theory, demonstrating the mechanism of size-dependent MIT. Our work suggests a clear and simple 2DEG platform to achieve the spatial coexistence of metallic and insulating phases.