论文标题
实例级别的异质域适应有限标记的素描至光片检索
Instance-level Heterogeneous Domain Adaptation for Limited-labeled Sketch-to-Photo Retrieval
论文作者
论文摘要
尽管素描到光能检索具有广泛的应用,但获得配对且标记的地面真相是昂贵的。不同的是,照片检索数据更容易获取。因此,以前的作品将其模型预先训练在富含标记的照片检索数据(即源域)上,然后在有限标记的素描到票房检索数据(即目标域)上对其进行微调。但是,如果没有共同训练源和目标数据,则在微调过程中可能会忘记源域知识,而仅将它们共同培训可能会导致域间隙引起的负转移。此外,源数据和目标数据的身份标签空间通常是不相交的,因此常规类别级域的适应性(DA)不直接适用。为了解决这些问题,我们建议实例级的异质域适应(IHDA)框架。我们将微调策略应用于身份标签学习中,旨在以归纳转移方式转移实例级别的知识。同时,选择来自源数据的标记属性以形成用于源和目标域的共享标签空间。在共享属性的指导下,DA用于桥接跨数据库域间隙和异质域间隙,这些域以偏置转移方式传输实例级别知识。实验表明,我们的方法已经在没有额外注释的三个素描到光明图像检索基准上设置了新的最新技术,这为在有限标记的异质图像检索任务上训练更有效的模型打开了大门。相关代码可在https://github.com/fandulu/ihda上找到。
Although sketch-to-photo retrieval has a wide range of applications, it is costly to obtain paired and rich-labeled ground truth. Differently, photo retrieval data is easier to acquire. Therefore, previous works pre-train their models on rich-labeled photo retrieval data (i.e., source domain) and then fine-tune them on the limited-labeled sketch-to-photo retrieval data (i.e., target domain). However, without co-training source and target data, source domain knowledge might be forgotten during the fine-tuning process, while simply co-training them may cause negative transfer due to domain gaps. Moreover, identity label spaces of source data and target data are generally disjoint and therefore conventional category-level Domain Adaptation (DA) is not directly applicable. To address these issues, we propose an Instance-level Heterogeneous Domain Adaptation (IHDA) framework. We apply the fine-tuning strategy for identity label learning, aiming to transfer the instance-level knowledge in an inductive transfer manner. Meanwhile, labeled attributes from the source data are selected to form a shared label space for source and target domains. Guided by shared attributes, DA is utilized to bridge cross-dataset domain gaps and heterogeneous domain gaps, which transfers instance-level knowledge in a transductive transfer manner. Experiments show that our method has set a new state of the art on three sketch-to-photo image retrieval benchmarks without extra annotations, which opens the door to train more effective models on limited-labeled heterogeneous image retrieval tasks. Related codes are available at https://github.com/fandulu/IHDA.