论文标题
基于粒子的稀疏高斯工艺优化器
A Particle-based Sparse Gaussian Process Optimizer
论文作者
论文摘要
神经网络中的任务学习通常需要为损失功能目标找到全球最佳的最小化器。基于群体的优化方法的常规设计应用了固定的更新规则,可能是基于梯度下降的优化的自适应步骤。尽管这些方法在解决不同的优化问题方面取得了巨大成功,但在某些情况下,这些方案效率低下或局部最低限度。我们提出了一种利用高斯过程回归的新的基于粒子清除的框架,以学习下降的基本动力学过程。这种方法的最大优点是在决定下降方向之前,在当前状态周围进行了更大的探索。经验结果表明,在解决非凸优化问题时,与广泛使用的最新优化器相比,我们的方法可以逃脱本地最小值。我们还在高维参数空间案例下测试了我们的方法,即图像分类任务。
Task learning in neural networks typically requires finding a globally optimal minimizer to a loss function objective. Conventional designs of swarm based optimization methods apply a fixed update rule, with possibly an adaptive step-size for gradient descent based optimization. While these methods gain huge success in solving different optimization problems, there are some cases where these schemes are either inefficient or suffering from local-minimum. We present a new particle-swarm-based framework utilizing Gaussian Process Regression to learn the underlying dynamical process of descent. The biggest advantage of this approach is greater exploration around the current state before deciding a descent direction. Empirical results show our approach can escape from the local minima compare with the widely-used state-of-the-art optimizers when solving non-convex optimization problems. We also test our approach under high-dimensional parameter space case, namely, image classification task.