论文标题
紧凑型超卡特尔的三十三个变形类别
Thirty-three deformation classes of compact hyperkähler orbifolds
论文作者
论文摘要
由于它们平滑的类似物,在Bogomolov分解定理的概括(arxiv:Math/0402243,Arxiv:2012.00441)的概括中,不可还原的符号品种出现为基本砖。令$ s $为K3表面;概括了藤ki构造,我们使用简单连接的平滑基因座调查了不可还原的符号性品种,可以作为产品$ s^{n} $的终端化获得。在维度4中,我们计算了29个Orbifolds示例的奇异性,这些示例似乎是在变形下独立的。我们还提供了尺寸6中的其他4个Orbifolds示例。
As their smooth analogue the irreducible symplectic varieties appear as elementary bricks in the generalizations of the Bogomolov decomposition theorem (arXiv:math/0402243, arXiv:2012.00441). Let $S$ be a K3 surface; generalizing the Fujiki construction, we investigate the irreducible symplectic varieties with simply connected smooth locus that can be obtained as terminalizations of quotients of the product $S^{n}$. In dimension 4, we compute the singularities for 29 orbifolds examples which appear to be independent under deformation. We also provide 4 additional orbifolds examples in dimension 6.