论文标题

在广义的罗伯逊 - 步行者几何形状中翻译孤子

Translating Solitons in Generalised Robertson-Walker Geometries

论文作者

Artacho, Diego, Lawn, Marie-Amélie, Ortega, Miguel

论文摘要

我们概括了在广义的Robertson-Walker Sapcetimes中翻译孤子的概念,后者配备了自然的保形杀死时间样的矢量领域。我们将这些物体存在的三个单参数家族归为翘曲功能,并为一个大型的Riemannian纤维家族完全分类了相应的Grim收割机 - 翻译不变的孤子。

We generalise the notion of translating solitons in Generalised Robertson-Walker sapcetimes, which come equipped with a natural conformal Killing time-like vector field. We single out three one-parameter families of warping functions for which these objects exist, and we fully classify the corresponding Grim Reapers -- translation-invariant solitons -- for a large family of Riemannian fibres.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源