论文标题

部分可观测时空混沌系统的无模型预测

Reconciling model-X and doubly robust approaches to conditional independence testing

论文作者

Niu, Ziang, Chakraborty, Abhinav, Dukes, Oliver, Katsevich, Eugene

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Model-X approaches to testing conditional independence between a predictor and an outcome variable given a vector of covariates usually assume exact knowledge of the conditional distribution of the predictor given the covariates. Nevertheless, model-X methodologies are often deployed with this conditional distribution learned in sample. We investigate the consequences of this choice through the lens of the distilled conditional randomization test (dCRT). We find that Type-I error control is still possible, but only if the mean of the outcome variable given the covariates is estimated well enough. This demonstrates that the dCRT is doubly robust, and motivates a comparison to the generalized covariance measure (GCM) test, another doubly robust conditional independence test. We prove that these two tests are asymptotically equivalent, and show that the GCM test is optimal against (generalized) partially linear alternatives by leveraging semiparametric efficiency theory. In an extensive simulation study, we compare the dCRT to the GCM test. These two tests have broadly similar Type-I error and power, though dCRT can have somewhat better Type-I error control but somewhat worse power in small samples or when the response is discrete. We also find that post-lasso based test statistics (as compared to lasso based statistics) can dramatically improve Type-I error control for both methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源