论文标题
部分可观测时空混沌系统的无模型预测
Deep Learning for Efficient CSI Feedback in Massive MIMO: Adapting to New Environments and Small Datasets
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Deep learning (DL)-based channel state information (CSI) feedback has shown promising potential to improve spectrum efficiency in massive MIMO systems. However, practical DL approaches require a sizeable CSI dataset for each scenario, and require large storage or updating bandwidth for multiple learned models. To overcome this costly barrier, we develop a solution for efficient training and deployment enhancement of DL-based CSI feedback by exploiting a lightweight translation model to cope with new CSI environments and by proposing novel dataset augmentation based on domain knowledge. Specifically, we first develop a deep unfolding CSI feedback network, SPTM2-ISTANet+, which employs spherical normalization to address the challenge of path loss variation. We also introduce an integration of a trainable measurement matrix and residual CSI recovery blocks within SPTM2-ISTANet+ to improve efficiency and accuracy. Using SPTM2-ISTANet+ as the anchor feedback model, we propose an efficient scenario-adaptive CSI feedback architecture. This new CSI-TransNet exploits a plug-in module for CSI translation consisting of a sparsity aligning function and lightweight DL module to reuse pretrained models in unseen environments. To work with small datasets, we propose a lightweight and general augmentation strategy based on domain knowledge. Test results demonstrate the efficacy and efficiency of the proposed solution for accurate CSI feedback given limited measurements for unseen CSI environments.