论文标题
强透镜观察对暗物质子结构的敏感性:欧几里得的案例研究
Sensitivity of strong lensing observations to dark matter substructure: a case study with Euclid
论文作者
论文摘要
我们介绍了一种机器学习方法,以估计强镜观测到对镜片中暗物质subhaoes的敏感性。我们的训练数据包括椭圆形的镜头镜头,哈勃深部田间源,外部剪切,以及欧几里得仪器的噪声和PSF。我们使用$ v_ \ mathrm {max} $ - $ r_ \ mathrm {max} $关系设置了子哈洛斯的浓度。然后,我们估计暗物质subhalo敏感性$ 16 {,} 000 $模拟的强镜观测值,具有深度和分辨率,类似于欧几里得VIS图像。我们发现,在$3σ$检测阈值的情况下,Einstein Radius的内部像素的$ 2.35 $ 2.35 $ 2.2.35 $的像素对亚易度敏感,质量$ $ M_ \ MATHRM {max} \ leq 10^{10^{10} {10} m_ \ odot $ 0.03 $,$ 0.03 $,$ 0.03 $ $ M _ \ MAX MAX \ MAX MAX MAX MAX MAX {MAX {MAX { 10^{9} m_ \ odot $,并且发现灵敏度的极限为$ m_ \ mathrm {max} = 10^{8.8 \ pm0.2} m_ \ odot $。使用我们的灵敏度图和假设CDM,我们估计类似欧几里德的镜头将产生$ 1.43^{+0.14} _ { - 0.11} [F_ \ Mathrm {sub}^{ - 1}^{ - 1}] $在整个样品中可检测到的亚透镜$ 35.6^{+0.9} _ { - 0.9} [f_ \ mathrm {sub}^{ - 1}] $每个镜头中最敏感的镜头中的$。估计值以子结构质量分数$ f_ \ mathrm {sub}^{ - 1} $的倒数为单位给出。假设$ f_ \ mathrm {sub} = 0.01 $,通常每$ 70 $镜头中一个应得出检测,或者在最敏感的样本中每三个$ \ sim $三镜头中有一个。从欧几里得检测到的$ 170,000 $新的强镜头,我们预计$ \ sim 2500 $新的Subhalo检测。我们发现,温暖暗物质模型中可检测到的亚李的预期数量仅相对于已经排除的模型,即具有半模式质量的模型$ M_ \ mathrm {Hm}> 10^8M_ \ odot $变化。
We introduce a machine learning method for estimating the sensitivity of strong lens observations to dark matter subhaloes in the lens. Our training data include elliptical power-law lenses, Hubble Deep Field sources, external shear, and noise and PSF for the Euclid VIS instrument. We set the concentration of the subhaloes using a $v_\mathrm{max}$-$r_\mathrm{max}$ relation. We then estimate the dark matter subhalo sensitivity in $16{,}000$ simulated strong lens observations with depth and resolution resembling Euclid VIS images. We find that, with a $3σ$ detection threshold, $2.35$ per cent of pixels inside twice the Einstein radius are sensitive to subhaloes with a mass $M_\mathrm{max}\leq 10^{10}M_\odot$, $0.03$ per cent are sensitive to $M_\mathrm{max}\leq 10^{9}M_\odot$, and, the limit of sensitivity is found to be $M_\mathrm{max}=10^{8.8\pm0.2}M_\odot$. Using our sensitivity maps and assuming CDM, we estimate that Euclid-like lenses will yield $1.43^{+0.14}_{-0.11}[f_\mathrm{sub}^{-1}]$ detectable subhaloes per lens in the entire sample, but this increases to $35.6^{+0.9}_{-0.9}[f_\mathrm{sub}^{-1}]$ per lens in the most sensitive lenses. Estimates are given in units of the inverse of the substructure mass fraction $f_\mathrm{sub}^{-1}$. Assuming $f_\mathrm{sub}=0.01$, one in every $70$ lenses in general should yield a detection, or one in every $\sim$ three lenses in the most sensitive sample. From $170,000$ new strong lenses detected by Euclid, we expect $\sim 2500$ new subhalo detections. We find that the expected number of detectable subhaloes in warm dark matter models only changes relative to cold dark matter for models which have already been ruled out, i.e., those with half-mode masses $M_\mathrm{hm}>10^8M_\odot$.