论文标题

“随机逆问题”和变化的变化

"Stochastic Inverse Problems" and Changes-of-Variables

论文作者

Marcy, Peter W., Morrison, Rebecca E.

论文摘要

在过去的十年中,一系列应用的数学论文探索了一种逆问题,这些问题由各种名称,包括“逆敏感性”,“基于PushForward的推理”,“一致的贝叶斯推理”,“一致的贝叶斯推理”或“数据相关反转”或“数据相关反转” - 其中,其中A解决方案是其Poperity Leaste pocter pocterbarts upphorward apphorward appherward。这种随机反问题的表述可能是意外的,也可能与熟悉传统贝叶斯或其他统计推论的人感到困惑。迄今为止,已经提出了两类的解决方案,并且仅通过衡量理论的应用及其瓦解定理来证明这些解决方案是合理的。在这项工作中,我们表明,在轻度假设下,使用基本概率理论可以更清楚地了解所有随机逆问题的方法和解决方案:随机逆问题仅仅是变化的变化或其近似值。对于两个现有的解决方案类别,我们得出了变化的变化的关系,并使用以前没有的分析示例说明了。我们的推导既不使用贝叶斯定理也不使用瓦解定理。我们的最终贡献是将变化变化与更传统的统计推断进行仔细比较。在大部分论文中以面值的脸值进行随机反问题时,我们的最终比较讨论对框架进行了批评。

Over the last decade, a series of applied mathematics papers have explored a type of inverse problem--called by a variety of names including "inverse sensitivity", "pushforward based inference", "consistent Bayesian inference", or "data-consistent inversion"--wherein a solution is a probability density whose pushforward takes a given form. The formulation of such a stochastic inverse problem can be unexpected or confusing to those familiar with traditional Bayesian or otherwise statistical inference. To date, two classes of solutions have been proposed, and these have only been justified through applications of measure theory and its disintegration theorem. In this work we show that, under mild assumptions, the formulation of and solution to all stochastic inverse problems can be more clearly understood using basic probability theory: a stochastic inverse problem is simply a change-of-variables or approximation thereof. For the two existing classes of solutions, we derive the relationship to change(s)-of-variables and illustrate using analytic examples where none had previously existed. Our derivations use neither Bayes' theorem nor the disintegration theorem explicitly. Our final contribution is a careful comparison of changes-of-variables to more traditional statistical inference. While taking stochastic inverse problems at face value for the majority of the paper, our final comparative discussion gives a critique of the framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源