论文标题
使用条件生成的对抗网络来控制生成图像的统计特征进行IACT数据分析
Using a Conditional Generative Adversarial Network to Control the Statistical Characteristics of Generated Images for IACT Data Analysis
论文作者
论文摘要
生成对抗网络是天文学域中图像生成的有前途的工具。特别感兴趣的是条件生成对抗网络(CGAN),它使您可以根据图像的某些属性值将图像分为几个类,然后在生成新图像时指定所需类。对于来自成像大气Cherenkov望远镜(IACTS)的图像,重要特性是所有图像像素(图像大小)的总亮度,它与主要颗粒的能量直接相关。我们使用CGAN技术生成与Taiga-IACT实验中获得的图像相似。作为训练集,我们使用了使用Taiga Monte Carlo模拟软件生成的一组二维图像。我们将训练集分为10个类,按大小对图像进行分类,并定义类的边界,以使相同数量的图像落入每个类中。培训我们的网络时使用了这些课程。该论文表明,对于每个类,生成的图像的尺寸分布接近正常,平均值大约位于相应类的中间。我们还表明,对于生成的图像,通过将所有类别的分布相加得出的总图像分布与训练集的原始分布接近。获得的结果对于更准确地生成了与IACTS拍摄的结果相似的实际生成合成图像非常有用。
Generative adversarial networks are a promising tool for image generation in the astronomy domain. Of particular interest are conditional generative adversarial networks (cGANs), which allow you to divide images into several classes according to the value of some property of the image, and then specify the required class when generating new images. In the case of images from Imaging Atmospheric Cherenkov Telescopes (IACTs), an important property is the total brightness of all image pixels (image size), which is in direct correlation with the energy of primary particles. We used a cGAN technique to generate images similar to whose obtained in the TAIGA-IACT experiment. As a training set, we used a set of two-dimensional images generated using the TAIGA Monte Carlo simulation software. We artificiallly divided the training set into 10 classes, sorting images by size and defining the boundaries of the classes so that the same number of images fall into each class. These classes were used while training our network. The paper shows that for each class, the size distribution of the generated images is close to normal with the mean value located approximately in the middle of the corresponding class. We also show that for the generated images, the total image size distribution obtained by summing the distributions over all classes is close to the original distribution of the training set. The results obtained will be useful for more accurate generation of realistic synthetic images similar to the ones taken by IACTs.