论文标题

多传感器多尺度卫星土壤水分检索的基于细分市场的融合

Segment-based fusion of multi-sensor multi-scale satellite soil moisture retrievals

论文作者

Attarzadeh, Reza, Bagheri, Hossein, Khosravi, Iman, Niazmardi, Saeid, Akbarid, Davood

论文摘要

由于不同传感器的不同优势,将传感器用于土壤水分检索的协同使用引起了人们的关注。主动,被动和光学数据集成可能是利用旨在准备土壤水分图的不同传感器的优势的综合解决方案。通常,基于像素的方法用于多传感器融合。由于不同的应用需要不同尺度的土壤水分图,因此为此目的而言,基于像素的方法受到限制。采用图像对象而不是像素的基于对象的图像分析可以帮助我们满足这一需求。本文提出了一个基于细分市场的图像融合框架,以评估通过集成的Sentinel-1,Sentinel-2和土壤湿度活性被动(SMAP)数据来制备多尺度土壤水分图的可能性。结果证实,与基于像素的融合方法相比,所提出的方法能够改善不同尺度的土壤水分估计。

Synergetic use of sensors for soil moisture retrieval is attracting considerable interest due to the different advantages of different sensors. Active, passive, and optic data integration could be a comprehensive solution for exploiting the advantages of different sensors aimed at preparing soil moisture maps. Typically, pixel-based methods are used for multi-sensor fusion. Since, different applications need different scales of soil moisture maps, pixel-based approaches are limited for this purpose. Object-based image analysis employing an image object instead of a pixel could help us to meet this need. This paper proposes a segment-based image fusion framework to evaluate the possibility of preparing a multi-scale soil moisture map through integrated Sentinel-1, Sentinel-2, and Soil Moisture Active Passive (SMAP) data. The results confirmed that the proposed methodology was able to improve soil moisture estimation in different scales up to 20% better compared to pixel-based fusion approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源