论文标题

使用逼真的LIDAR模拟库分析基础设施激光雷达放置

Analyzing Infrastructure LiDAR Placement with Realistic LiDAR Simulation Library

论文作者

Cai, Xinyu, Jiang, Wentao, Xu, Runsheng, Zhao, Wenquan, Ma, Jiaqi, Liu, Si, Li, Yikang

论文摘要

最近,车辆到所有(V2X)的合作感已引起人们越来越多的关注。基础设施传感器在该研究领域起着至关重要的作用。但是,很少研究如何找到基础设施传感器的最佳位置。在本文中,我们研究了基础设施传感器放置的问题,并提出了一条管道,该管道可以在现实的模拟环境中有效,有效地找到基础架构传感器的最佳安装位置。为了更好地模拟和评估激光雷达的位置,我们建立了一个逼真的LiDAR模拟库,该库可以模拟不同流行的LiDars的独特特性,并在Carla Simulator中产生高保真的激光雷德点云。通过在不同的激光雷达放置中模拟点云数据,我们可以使用多个检测模型评估这些位置的感知精度。然后,我们通过计算目标区域的密度和均匀性来分析点云分布与感知精度之间的相关性。实验表明,与标准车道场景中的常规放置方案相比,使用我们提出的方法优化的相同数量和类型的LIDAR时,通过我们提出的方法优化的放置方案将平均精度提高了15%。我们还分析了感兴趣区域的感知表现与激光点云分布之间的相关性,并验证该密度和均匀性可以是性能的指标。 RLS库和相关代码都将在https://github.com/pjlab-adg/pcsim上发布。

Recently, Vehicle-to-Everything(V2X) cooperative perception has attracted increasing attention. Infrastructure sensors play a critical role in this research field; however, how to find the optimal placement of infrastructure sensors is rarely studied. In this paper, we investigate the problem of infrastructure sensor placement and propose a pipeline that can efficiently and effectively find optimal installation positions for infrastructure sensors in a realistic simulated environment. To better simulate and evaluate LiDAR placement, we establish a Realistic LiDAR Simulation library that can simulate the unique characteristics of different popular LiDARs and produce high-fidelity LiDAR point clouds in the CARLA simulator. Through simulating point cloud data in different LiDAR placements, we can evaluate the perception accuracy of these placements using multiple detection models. Then, we analyze the correlation between the point cloud distribution and perception accuracy by calculating the density and uniformity of regions of interest. Experiments show that when using the same number and type of LiDAR, the placement scheme optimized by our proposed method improves the average precision by 15%, compared with the conventional placement scheme in the standard lane scene. We also analyze the correlation between perception performance in the region of interest and LiDAR point cloud distribution and validate that density and uniformity can be indicators of performance. Both the RLS Library and related code will be released at https://github.com/PJLab-ADG/PCSim.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源