论文标题
每个节点计数:改进节点分类的图形神经网络的培训
Every Node Counts: Improving the Training of Graph Neural Networks on Node Classification
论文作者
论文摘要
图神经网络(GNN)在有效,有效地处理稀疏和非结构化数据方面很突出。具体而言,GNN被证明对节点分类任务非常有效,在该任务中,标记的信息仅适用于部分节点。通常,通过目标函数,优化过程仅考虑标记的节点,而忽略其余的节点。在本文中,我们提出了用于培训GNN进行节点分类的新型客观术语,旨在利用所有可用数据并提高准确性。我们的第一项旨在在优化过程中考虑标记和未标记的节点之间的节点和标签特征之间的相互信息。我们的第二项促进了预测图中各向异性平滑度。最后,我们提出了一种交叉验证梯度方法,以增强从标记数据中学习。我们提出的目标是一般的,可以应用于各种GNN,不需要建筑修改。广泛的实验证明了我们使用GCN,GAT和GCNII(例如GCN,GAT和GCNII)的流行GNN的方法,阅读了10个现实世界节点分类数据集的一致而显着的准确性提高。
Graph Neural Networks (GNNs) are prominent in handling sparse and unstructured data efficiently and effectively. Specifically, GNNs were shown to be highly effective for node classification tasks, where labelled information is available for only a fraction of the nodes. Typically, the optimization process, through the objective function, considers only labelled nodes while ignoring the rest. In this paper, we propose novel objective terms for the training of GNNs for node classification, aiming to exploit all the available data and improve accuracy. Our first term seeks to maximize the mutual information between node and label features, considering both labelled and unlabelled nodes in the optimization process. Our second term promotes anisotropic smoothness in the prediction maps. Lastly, we propose a cross-validating gradients approach to enhance the learning from labelled data. Our proposed objectives are general and can be applied to various GNNs and require no architectural modifications. Extensive experiments demonstrate our approach using popular GNNs like GCN, GAT and GCNII, reading a consistent and significant accuracy improvement on 10 real-world node classification datasets.