论文标题
线性扩展的相关不平等
Correlation inequalities for linear extensions
论文作者
论文摘要
我们采用组合图集技术来证明有限poset的线性扩展数量的新相关性不平等。其中包括概率的近似独立性和随机线性扩展值的值,与斯坦利的不平等密切相关。我们还向标准的年轻Tableaux和Euler数量提供了申请。
We employ the combinatorial atlas technology to prove new correlation inequalities for the number of linear extensions of finite posets. These include the approximate independence of probabilities and expectations of values of random linear extensions, closely related to Stanley's inequality. We also give applications to the numbers of standard Young tableaux and to Euler numbers.