论文标题
动力学反行磁重新连接期间电子的力平衡
The Force Balance of Electrons During Kinetic Anti-parallel Magnetic Reconnection
论文作者
论文摘要
完全动力学模拟应用于2D反平行重新连接的研究,阐明电子流体在电子扩散区域(EDR)和离子扩散区(IDR)内保持力平衡的动力学。在IDR内部,磁场对齐的电子压力各向异性($ p_ {e \ parallel} \ gg p_ {e \ perp})$在EDR的上游发展。与以前的研究相比,现代计算机设施的使用允许在天然质子与电子质量比$ m_i/m_e = 1836 $上进行模拟。在此高$ m_i/m_e $ - 限制电子动力学质量变化,因为向EDR的电子流入增强并主要由各向异性压力驱动。使用与重新连接磁场和与中央电流层保持一致的$ x $方向的坐标系统,众所周知,众所周知,对于$ x $的$ x $ partial Partial Partial Partial Partial and partial and partial and and and}/ aptiat x}/ aptial complatiate the Rementection the Exy and}/ a ialtal and}/ a p _ { p_ {eyz}/ \部分z $ off-diagonal电子压力应力组件。我们发现,EDR上游的电子各向异性在EDR中施加了$ \ partial p_ {exy}/ \ partial x $的大量值,并且沿重新连接$ x $ - 沿着这种压力取消这种压力的压力会因先前确定的$ \ partial p _ p_ {eiez eyz}/ \ partial z $而取消压力。相反,通过重新连接电场与电子直接加热相关的压力张量梯度,冻结了冻结的法律。重新连接速率可以自由调整到较大尺度下血浆动力学在外部施加的值。
Fully kinetic simulations are applied to the study of 2D anti-parallel reconnection, elucidating the dynamics by which the electron fluid maintains force balance within both the electron diffusion region (EDR) and the ion diffusion region (IDR). Inside the IDR, magnetic field-aligned electron pressure anisotropy ($p_{e\parallel}\gg p_{e\perp})$ develops upstream of the EDR. Compared to previous investigations, the use of modern computer facilities allows for simulations at the natural proton to electron mass ratio $m_i/m_e=1836$. In this high-$m_i/m_e$-limit the electron dynamics changes qualitatively, as the electron inflow to the EDR is enhanced and mainly driven by the anisotropic pressure. Using a coordinate system with the $x$-direction aligned with the reconnecting magnetic field and the $y$-direction aligned with the central current layer, it is well-known that for the much studied 2D laminar anti-parallel and symmetric scenario the reconnection electric field at the $X$-line must be balanced by the $\partial p_{exy}/ \partial x$ and $\partial p_{eyz}/ \partial z$ off-diagonal electron pressure stress components. We find that the electron anisotropy upstream of the EDR imposes large values of $\partial p_{exy}/ \partial x$ within the EDR, and along the direction of the reconnection $X$-line this stress cancels with the stress of a previously determined theoretical form for $\partial p_{eyz}/ \partial z$. The electron frozen-in law is instead broken by pressure tensor gradients related to the direct heating of the electrons by the reconnection electric field. The reconnection rate is free to adjust to the value imposed externally by the plasma dynamics at larger scales.