论文标题
关于一般线性群的爱森斯坦系列的身份
An Identity relating Eisenstein series on general linear groups
论文作者
论文摘要
我们给出了有关一般线性群的一般身份,与Eisenstein系列有关。我们通过构建一个附着在最大抛物线亚组和一对表示,一个Cuspidal和另一个角色的Eisenstein系列中来做到这一点,并用退化的Eisenstein系列来表达。在本地领域的类似物中,我们证明了当地积分半平面及其仿药延续的收敛。此外,我们发现未经夸大的计算赋予了godement-jacquet zeta函数。这实现并概括了金茨堡和Soudry在其第3节中提出的构造,以“源自双倍的方法衍生出的积分”。
We give a general identity relating Eisenstein series on general linear groups. We do it by constructing an Eisenstein series, attached to a maximal parabolic subgroup and a pair of representations, one cuspidal and the other a character, and express it in terms of a degenerate Eisenstein series. In the local fields analogue, we prove the convergence in a half plane of the local integrals, and their meromorphic continuation. In addition, we find that the unramified calculation gives the Godement-Jacquet zeta function. This realizes and generalizes the construction proposed by Ginzburg and Soudry in Section 3 in their aritcle "Integral derived from the doubling method".