论文标题

(1,0) - 分解纤维的全态纤维束的全态扩展

Holomorphic extension in holomorphic fiber bundles with (1,0)-compactifiable fiber

论文作者

Feklistov, Sergey

论文摘要

我们将Leray光谱序列用于带有紧凑型支持的薄层共同体学组,以获得消失的结果。在整体的总空间上,sheaves $ r^{\ bullet} ϕ _ {!} \ mathcal {o} $在整体空间的总空间上,$ \ mathcal {o} $具有典型的拓扑结构。使用标准\ VCECH参数,我们证明了该茎上QDFS-TOLOGY的密度引理。特别是,我们获得了用斯坦纤维的全体形态纤维束的消失结果。 Using Künnet formulas, properties of an inductive topology (with respect to the pair of spaces) on the stalks of the sheaf $R^{1}ϕ_{!}\mathcal{O}$ and a cohomological criterion for the Hartogs phenomenon we obtain the main result on the Hartogs phenomenon for the total space of holomorphic fiber bundles with (1,0) - 分解纤维。

We use the Leray spectral sequence for the sheaf cohomology groups with compact supports to obtain a vanishing result. The stalks of sheaves $R^{\bullet}ϕ_{!}\mathcal{O}$ for the structure sheaf $\mathcal{O}$ on the total space of a holomorphic fiber bundle $ϕ$ has canonical topology structures. Using the standard \vCech argument we prove a density lemma for QDFS-topology on this stalks. In particular, we obtain a vanishing result for holomorphic fiber bundles with Stein fibers. Using Künnet formulas, properties of an inductive topology (with respect to the pair of spaces) on the stalks of the sheaf $R^{1}ϕ_{!}\mathcal{O}$ and a cohomological criterion for the Hartogs phenomenon we obtain the main result on the Hartogs phenomenon for the total space of holomorphic fiber bundles with (1,0)-compactifiable fibers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源