论文标题

多视图跟踪,重新ID和社交网络分析在户外鸟类中的一群视觉上相似的鸟类

Multi-view Tracking, Re-ID, and Social Network Analysis of a Flock of Visually Similar Birds in an Outdoor Aviary

论文作者

Xiao, Shiting, Wang, Yufu, Perkes, Ammon, Pfrommer, Bernd, Schmidt, Marc, Daniilidis, Kostas, Badger, Marc

论文摘要

捕获社会群体中个体之间详细互动的能力是我们对动物行为和神经科学的研究的基础。深度学习和计算机视觉的最新进展正在推动可以同时记录多个人的动作和相互作用的方法的快速进步。然而,许多社会物种(例如鸟类)生活在三维世界中。这个世界引入了其他感知挑战,例如遮挡,依赖于方向的外观,明显大小的较大变化以及3D重建的传感器覆盖范围差,这些重建并未通过研究仅在2D平面上移动和相互作用的动物而遇到的。在这里,我们介绍了一个系统,用于研究一组鸣禽在整个3D鸟类中移动时的行为动力学。我们研究在三个维度跟踪一组紧密相互作用的动物时出现的复杂性,并引入一个新的数据集来评估多视图跟踪器。最后,我们分析了捕获的伦理图数据,并证明社会环境会影响鸟类中鸟类之间的顺序相互作用的分布。

The ability to capture detailed interactions among individuals in a social group is foundational to our study of animal behavior and neuroscience. Recent advances in deep learning and computer vision are driving rapid progress in methods that can record the actions and interactions of multiple individuals simultaneously. Many social species, such as birds, however, live deeply embedded in a three-dimensional world. This world introduces additional perceptual challenges such as occlusions, orientation-dependent appearance, large variation in apparent size, and poor sensor coverage for 3D reconstruction, that are not encountered by applications studying animals that move and interact only on 2D planes. Here we introduce a system for studying the behavioral dynamics of a group of songbirds as they move throughout a 3D aviary. We study the complexities that arise when tracking a group of closely interacting animals in three dimensions and introduce a novel dataset for evaluating multi-view trackers. Finally, we analyze captured ethogram data and demonstrate that social context affects the distribution of sequential interactions between birds in the aviary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源