论文标题

霍克斯过程的可扩展和自适应变分贝叶斯方法

Scalable and adaptive variational Bayes methods for Hawkes processes

论文作者

Sulem, Deborah, Rivoirard, Vincent, Rousseau, Judith

论文摘要

霍克斯流程通常用于多变量事件数据集中的模型依赖性和相互作用现象,例如神经元尖峰火车,社交互动和金融交易。在非参数环境中,学习霍克斯过程的时间依赖性结构通常是一项计算昂贵的任务,而贝叶斯估计方法则更多。特别是,对于广义的非线性霍克斯过程,用于计算双重棘手的后验分布的蒙特卡洛马尔可夫链方法在实践中无法扩展到高维过程。最近,已经提出了针对后验分布的平均场变异近似的有效算法。在这项工作中,我们首先在一般的非参数推理框架下统一了现有的变化贝叶斯方法,并在易于验证的条件下,在先验,变异类和非线性模型的情况下分析这些方法的渐近性能。其次,我们提出了一种新型的稀疏性诱导程序,并为流行的Sigmoid Hawkes过程得出了一种适应性的平均场变异算法。我们的算法是可行的,因此在高维设置中在计算上有效。通过大量的数值模拟,我们还证明了我们的过程能够适应霍克斯过程参数的维度,并且部分适合某种类型的模型错误指定。

Hawkes processes are often applied to model dependence and interaction phenomena in multivariate event data sets, such as neuronal spike trains, social interactions, and financial transactions. In the nonparametric setting, learning the temporal dependence structure of Hawkes processes is generally a computationally expensive task, all the more with Bayesian estimation methods. In particular, for generalised nonlinear Hawkes processes, Monte-Carlo Markov Chain methods applied to compute the doubly intractable posterior distribution are not scalable to high-dimensional processes in practice. Recently, efficient algorithms targeting a mean-field variational approximation of the posterior distribution have been proposed. In this work, we first unify existing variational Bayes approaches under a general nonparametric inference framework, and analyse the asymptotic properties of these methods under easily verifiable conditions on the prior, the variational class, and the nonlinear model. Secondly, we propose a novel sparsity-inducing procedure, and derive an adaptive mean-field variational algorithm for the popular sigmoid Hawkes processes. Our algorithm is parallelisable and therefore computationally efficient in high-dimensional setting. Through an extensive set of numerical simulations, we also demonstrate that our procedure is able to adapt to the dimensionality of the parameter of the Hawkes process, and is partially robust to some type of model mis-specification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源