论文标题

光原子束钟中的波前曲率

Wavefront Curvature in Optical Atomic Beam Clocks

论文作者

Strathearn, A., Offer, R. F., Hilton, A. P., Klantsataya, E., Luiten, A. N., Anderson, R. P., Sparkes, B. M., Stace, T. M.

论文摘要

原子钟为我们对时间和频率的理解提供了可再现的基础。采用热原子束的紧凑型光学时钟的最新演示已在$ 10^{ - 16} $中实现了短期分数频率不稳定性,具有最佳的国际频率标准。但是,紧凑型时钟固有的严重挑战是一定是较小的光束,这会导致询问波前的快速变化。这可能会导致热光束的不均匀激发,从而导致输出频率的长期漂移。在这里,我们使用带有弯曲波前的光场为Ramsey-Bordé干涉仪开发了一个模型,并模拟了[Olson等人,Phys。莱特牧师。 123,073202(2019)]。奥尔森(Olson)等人的结果在审讯中的原子反应中表现出令人惊讶和无法解释的行为。我们的模型预测信号与实验数据一致,并可以说明对激光几何形状的显着敏感性。我们发现,当激光器在询问区域未填充以最大程度地减少不均匀性时,信噪比将最大化,并且还确定了通过激光不均匀性和原子束的速度分布确定的最佳腰围。我们研究了时钟频率的移位和稳定性,表明gouy相是激光几何形状引起的频率变化的主要来源。

Atomic clocks provide a reproducible basis for our understanding of time and frequency. Recent demonstrations of compact optical clocks, employing thermal atomic beams, have achieved short-term fractional frequency instabilities in the $10^{-16}$, competitive with the best international frequency standards available. However, a serious challenge inherent in compact clocks is the necessarily smaller optical beams, which results in rapid variation in interrogating wavefronts. This can cause inhomogeneous excitation of the thermal beam leading to long term drifts in the output frequency. Here we develop a model for Ramsey-Bordé interferometery using optical fields with curved wavefronts and simulate the $^{40}$Ca beam clock experiment described in [Olson et al., Phys. Rev. Lett. 123, 073202 (2019)]. Olson et al.'s results had shown surprising and unexplained behaviour in the response of the atoms in the interrogation. Our model predicts signals consistent with experimental data and can account for the significant sensitivity to laser geometry that was reported. We find the signal-to-noise ratio is maximised when the laser is uncollimated at the interrogation zones to minimise inhomogeneity, and also identify an optimal waist size determined by both laser inhomogeneity and the velocity distribution of the atomic beam. We investigate the shifts and stability of the clock frequency, showing that the Gouy phase is the primary source of frequency variations arising from laser geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源