论文标题

$ x-y $交换拓扑递归的通用公式

A universal formula for the $x-y$ swap in topological recursion

论文作者

Alexandrov, Alexander, Bychkov, Boris, Dunin-Barkowski, Petr, Kazarian, Maxim, Shadrin, Sergey

论文摘要

我们证明了Borot等人最近的猜想。特定的通用封闭代数公式在输入数据中交换$ x $和$ y $后,恢复了拓扑递归的相关差。我们还表明,这种通用公式可以大大简化(因为Hock已经完成了)。 作为此一般$ x-y $互换结果的应用,我们证明了对于任何光谱曲线的情况下,拓扑递归差异的明确封闭公式,该曲线具有未造成的$ y $和任意有理$ x $的情况。

We prove a recent conjecture of Borot et al. that a particular universal closed algebraic formula recovers the correlation differentials of topological recursion after the swap of $x$ and $y$ in the input data. We also show that this universal formula can be drastically simplified (as it was already done by Hock). As an application of this general $x-y$ swap result, we prove an explicit closed formula for the topological recursion differentials for the case of any spectral curve with unramified $y$ and arbitrary rational $x$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源