论文标题
一个高度强大的稀疏分形数组
A Highly Robust Sparse Fractal Array
论文作者
论文摘要
术语分形是指具有递归性质并具有更好阵列因子特性的分数尺寸。在本文中,我们提出了一个新的稀疏阵列,其中分形的递归性质可用于设计一种天线阵列,称为稀疏分形阵列,通过结合各种稀疏阵列的稀疏性和分形阵列的递归性质。所提出的阵列最重要的属性是无孔的差异coarray,这是DOA估计的理想选择,因为诸如CoArray Music等各种算法需求无孔的差异coarray。但是,任何数组的性能都取决于其中的基本传感器和非必要传感器的存在,该传感器控制着差异是否会受到传感器故障的影响。因此,在本文中,对稀疏分形阵列的各种组合进行了严格的分析,以测试其在存在故障的传感器环境下的稳健性。
The term fractal refers to the fractional dimensions that have recursive nature and exhibit better array factor properties. In this article, we present a new class of sparse array where the recursive nature of a fractal can be used in designing an antenna array called a sparse fractal array by combining sparsity properties of the various sparse array and the recursive nature of fractal array. The most important property of the proposed array is the hole-free difference coarray which makes it a good choice for DOA estimation as various algorithms like coarray MUSIC etc demand hole-free difference coarray. But the performance of any array depends on the presence of essential and nonessential sensors in it which governs whether the difference coarray will get affected upon sensor failure or not. Hence, in this paper, a rigorous analysis is done for various combinations of sparse fractal arrays to test their robustness in presence of a faulty sensor environment.