论文标题

Granngan:图表注释生成对抗网络

GrannGAN: Graph annotation generative adversarial networks

论文作者

Boget, Yoann, Gregorova, Magda, Kalousis, Alexandros

论文摘要

我们考虑建模高维分布并生成具有复杂关系特征结构与图形骨架相干的数据示例的问题。我们提出的模型解决了通过将任务分为两个阶段来生成受每个数据点的特定图形结构约束的数据特征的问题。在第一个模型中,它模拟了与给定图的节点相关的特征的分布,在第二个中,它在节点特征上有条件地对边缘特征进行了补充。我们遵循通过生成对抗网络(GAN)结合置换模棱两可的消息传递架构在节点和边缘集合的策略中结合了隐式分布建模的策略。这使得可以在一个GO中生成所有图形对象的特征向量(以两个阶段为单位),而不是一代一代较慢的顺序模型,它可以防止需要基于约略的图形匹配过程,通常需要基于可能的基于可能的生成生成模型,并且通过对图形表示中的特定node订购不敏感的网络容量有效地使用网络容量。据我们所知,这是第一种模拟沿图形骨骼的特征分布的方法,允许使用用户指定的结构来代表几代带有的带有的图形。我们的实验证明了我们模型通过在三个带注释的图数据集上的定量评估来学习复杂的结构化分布的能力。

We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton. The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases. In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features. We follow the strategy of implicit distribution modelling via generative adversarial network (GAN) combined with permutation equivariant message passing architecture operating over the sets of nodes and edges. This enables generating the feature vectors of all the graph objects in one go (in 2 phases) as opposed to a much slower one-by-one generations of sequential models, prevents the need for expensive graph matching procedures usually needed for likelihood-based generative models, and uses efficiently the network capacity by being insensitive to the particular node ordering in the graph representation. To the best of our knowledge, this is the first method that models the feature distribution along the graph skeleton allowing for generations of annotated graphs with user specified structures. Our experiments demonstrate the ability of our model to learn complex structured distributions through quantitative evaluation over three annotated graph datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源