论文标题

$ t $ - 色调的稀疏图类别

The $t$-Tone Chromatic Number of Classes of Sparse Graphs

论文作者

Cranston, Daniel W., LaFayette, Hudson

论文摘要

对于图$ g $和$ t,k \ in \ mathbb {z}^+$ a \ emph {$ t $ -tone $ k $ -coloring} $ g $的$ g $是一个函数$ f:v(g)\ rightarrow \ rightarrow \ rightarrow \ binom {[k] [k]} <d(v,w)$用于所有不同$ v,w \ in v(g)$。 $ g $的\ emph {$ t $ -tone色编号},表示为$τ_t(g)$,是最低$ k $,因此$ g $是$ t $ t $ -tone $ k $ -olorable。对于$ t $的少量值,我们证明$ t $ t $色调的各类稀疏图的色度上的尖锐或几乎尖锐的上限。特别是,当$ \ textrm {mad}(g)<12/5 $和绑定的$τ_2(g)$时,我们确切确定$τ_2(g)$,当$ g $是外部平面时,$τ_2(g)$。当$ t \ in \ {3,4,5 \} $时,我们还确切确定$τ_t(c_n)$。

For a graph $G$ and $t,k\in\mathbb{Z}^+$ a \emph{$t$-tone $k$-coloring} of $G$ is a function $f:V(G)\rightarrow \binom{[k]}{t}$ such that $|f(v)\cap f(w)| < d(v,w)$ for all distinct $v,w \in V(G)$. The \emph{$t$-tone chromatic number} of $G$, denoted $τ_t(G)$, is the minimum $k$ such that $G$ is $t$-tone $k$-colorable. For small values of $t$, we prove sharp or nearly sharp upper bounds on the $t$-tone chromatic number of various classes of sparse graphs. In particular, we determine $τ_2(G)$ exactly when $\textrm{mad}(G) < 12/5$ and bound $τ_2(G)$, up to a small additive constant, when $G$ is outerplanar. We also determine $τ_t(C_n)$ exactly when $t\in\{3,4,5\}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源