论文标题
有限的平均振荡:$ \ mathbb {r} $ - 具有多 - $ \ Mathbb {k} _6 $ cubes的功能。 hardy空间的双重$ h^1 $和BANACH范围
Bounded Mean Oscillation: an $\mathbb{R}$-Function with Multi-$\mathbb{K}_6$ Cubes. Dual of the Hardy Space $H^1$ and Banach Extent
论文作者
论文摘要
本文研究了约翰·尼伦伯格(John-Nirenberg)的开拓性研究,在重新形式主义下,调查了有界平均振荡的谐波功能概念,适合于赋予其中固有的一些基本特性。更详细地说:快速介绍后,第二部分介绍了主要定理,以及与此功能有关的完整证明;在第三部分中,有一个关于指数的集成性(定理和证明的草图)的建议,而第四部分则涉及Hardy Space $ H^1 $的双重性和有界的平均振荡,并进行了一些演示的想法。写作用图形附录结束。
This paper investigates the concept of harmonic functions of bounded mean oscillation, starting from John-Nirenberg's pioneering studies, under a renewed formalism, suitable for bringing out some fundamental properties inherent in it. In more detail: after a quick introduction, the second Section presents the main theorem, plus complete proof, relating to this function; in the third Section there is a suggestion on the exponential integrability (theorem and sketch of proof), while the fourth Section deals with the duality of Hardy Space $H^1$ and bounded mean oscillation, with some ideas for a demonstration. The writing closes with a graphic appendix.