论文标题

Furpe:从部分专家学习全身重建

FuRPE: Learning Full-body Reconstruction from Part Experts

论文作者

Fan, Zhaoxin, Pan, Yuqing, Xu, Hao, Song, Zhenbo, Wang, Zhicheng, Wu, Kejian, Liu, Hongyan, He, Jun

论文摘要

在全身重建领域,注释数据的稀缺性通常会阻碍流行方法的功效。为了解决这个问题,我们介绍了Furpe,这是一个新型框架,采用部分专家和巧妙的伪基真实选择方案来推导高质量的伪标签。这些标签是我们方法的核心,使我们的网络能够有效地从可用数据中学习。 Furpe不可或缺的是一种独特的指数移动平均训练策略和专家衍生的功能蒸馏策略。这些新的Furpe元素不仅可以进一步完善模型,还可以减少伪标签中可能不准确的潜在偏差,从而优化了网络的训练过程并增强了模型的稳健性。我们应用Furpe来训练两阶段和完全卷积的单阶段全身重建网络。我们在众多基准数据集上进行的详尽实验表明,对现有方法的性能提高了,这突显了Furpe在全身重建中重塑最先进的可能性的潜力。

In the field of full-body reconstruction, the scarcity of annotated data often impedes the efficacy of prevailing methods. To address this issue, we introduce FuRPE, a novel framework that employs part-experts and an ingenious pseudo ground-truth selection scheme to derive high-quality pseudo labels. These labels, central to our approach, equip our network with the capability to efficiently learn from the available data. Integral to FuRPE is a unique exponential moving average training strategy and expert-derived feature distillation strategy. These novel elements of FuRPE not only serve to further refine the model but also to reduce potential biases that may arise from inaccuracies in pseudo labels, thereby optimizing the network's training process and enhancing the robustness of the model. We apply FuRPE to train both two-stage and fully convolutional single-stage full-body reconstruction networks. Our exhaustive experiments on numerous benchmark datasets illustrate a substantial performance boost over existing methods, underscoring FuRPE's potential to reshape the state-of-the-art in full-body reconstruction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源