论文标题

$ 4/3 \ CDOT OPT+2/3 $近似,用于大型两杆图表包装问题

A $4/3\cdot OPT+2/3$ approximation for big two-bar charts packing problem

论文作者

Erzin, Adil, Kononov, Alexander, Melidi, Georgii, Nazarenko, Stepan

论文摘要

两杆图表包装问题是将$ n $两杆图表(2-BC)打包成最少数量的单位容量箱。这个问题概括了强烈的NP坚硬垃圾箱包装问题。我们证明,即使每个2-BC至少高于1/2,问题仍然很强烈。接下来,我们考虑每个2-BC的第一个(或第二个)栏高于1/2的情况,并表明$ O(n^2)$ - 时间贪婪算法和2-BCS的初步词典订购2-BCS构造长度的封装最多$ opt $ opt+1 $,而$ opt $ opt $是最佳的。最终,该结果使我们能够提出$ O(n^{2.5})$ - 时间算法,该算法最多构建长度的填料,最多为$ 4/3 \ cdot opt+2/3 $,对于每个2-BC至少一个bar的bar至少一个bar高于1/2。

Two-Bar Charts Packing Problem is to pack $n$ two-bar charts (2-BCs) in a minimal number of unit-capacity bins. This problem generalizes the strongly NP-hard Bin Packing Problem. We prove that the problem remains strongly NP-hard even if each 2-BC has at least one bar higher than 1/2. Next we consider the case when the first (or second) bar of each 2-BC is higher than 1/2 and show that the $O(n^2)$-time greedy algorithm with preliminary lexicographic ordering of 2-BCs constructs a packing of length at most $OPT+1$, where $OPT$ is optimum. Eventually, this result allowed us to present an $O(n^{2.5})$-time algorithm that constructs a packing of length at most $4/3\cdot OPT+2/3$ for the NP-hard case when each 2-BC has at least one bar higher than 1/2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源