论文标题

自动深度优化的量子电路合成,用于对角统一矩阵,具有渐近最佳栅极计数

Automatic Depth-Optimized Quantum Circuit Synthesis for Diagonal Unitary Matrices with Asymptotically Optimal Gate Count

论文作者

Zhang, Shihao, Huang, Kai, Li, Lvzhou

论文摘要

当前的噪声中间尺度量子(NISQ)设备只能在浅深度上执行小型电路,因为它们仍然受噪声的存在限制:量子门具有错误率,量子状态由于反应而脆弱。因此,在为特定任务设计量子电路时,优化深度/门计数非常重要。对角统一矩阵众所周知,是许多量子算法或量子计算程序的关键构件。先前的工作已经讨论了原始门上的对角线统一矩阵的合成,$ \ {\ text {cnot},r_z \} $。但是,由于现有的合成方法尚未优化电路深度,因此尚未完全理解该问题。 在本文中,我们提出了一种深度优化的合成算法,该算法会自动为任何给定的对角线统一基质产生量子电路。特别是,它不仅可以确保渐近最佳的门计数,而且与以前的方法相比,总电路深度几乎减半。从技术上讲,我们发现了一个均匀的电路重写规则,适合减少电路深度。理论上分析了我们的合成算法的性能,并通过对两个示例的评估进行了实验验证。首先,我们比韦尔奇(Welch)合成最多16个QUAT的随机对角线矩阵的方法实现了近50 \%的深度。其次,我们平均达到22.05 \%的深度降低,以重新合成特定量子近似优化算法(QAOA)电路的对角线部分,最多14量列。

Current noisy intermediate-scale quantum (NISQ) devices can only execute small circuits with shallow depth, as they are still constrained by the presence of noise: quantum gates have error rates and quantum states are fragile due to decoherence. Hence, it is of great importance to optimize the depth/gate-count when designing quantum circuits for specific tasks. Diagonal unitary matrices are well-known to be key building blocks of many quantum algorithms or quantum computing procedures. Prior work has discussed the synthesis of diagonal unitary matrices over the primitive gate set $\{\text{CNOT}, R_Z\}$. However, the problem has not yet been fully understood, since the existing synthesis methods have not optimized the circuit depth. In this paper, we propose a depth-optimized synthesis algorithm that automatically produces a quantum circuit for any given diagonal unitary matrix. Specially, it not only ensures the asymptotically optimal gate-count, but also nearly halves the total circuit depth compared with the previous method. Technically, we discover a uniform circuit rewriting rule well-suited for reducing the circuit depth. The performance of our synthesis algorithm is both theoretically analyzed and experimentally validated by evaluations on two examples. First, we achieve a nearly 50\% depth reduction over Welch's method for synthesizing random diagonal unitary matrices with up to 16 qubits. Second, we achieve an average of 22.05\% depth reduction for resynthesizing the diagonal part of specific quantum approximate optimization algorithm (QAOA) circuits with up to 14 qubits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源