论文标题
一般修饰的重力理论的太阳系测试
The solar system test for the general modified gravity theories
论文作者
论文摘要
在过去的几十年中,提出了各种修改的重力理论,以模仿暗物质的效果。与常规的牛顿或相对论动力学相比,这些理论在动态方程中包含一些额外的明显术语,以替代暗物质的作用。一般而言,额外的明显术语通常会以半径尺寸扩展,因此只有在大规模上才能解释星系或星系簇中缺失质量的效果。然而,在太阳系等小结构中仍然可以观察到明显的效果。在本文中,我们得出了分析通用公式,以表示由于一般修改的重力理论,可以代表太阳系中行星的进动角的贡献,其中可以用半径$ r $的功率定律或$ r $的指数函数写入额外的显影力项。我们已经测试了三种流行的重力理论,即修改后的牛顿动力学(MOND),出现重力(例如)和修饰的重力(MOG)。特别是,基于太阳系数据,我们限制了MOND中两个流行的一般插值功能所涉及的参数。我们的结果通常可以应用于MOND的修改后的惯性和修饰的重力版本。
In the past few decades, various versions of modified gravity theories were proposed to mimic the effect of dark matter. Compared with the conventional Newtonian or relativistic dynamics, these theories contain some extra apparent force terms in the dynamical equations to replace the role of dark matter. Generally speaking, the extra apparent force terms usually scale with radius so that the effect would be significant only on large scale to explain the missing mass in galaxies or galaxy clusters. Nevertheless, the apparent effect may still be observable in small structures like the solar system. In this article, we derive analytic general formulae to represent the contribution of the precession angle of the planets in the solar system due to the general modified gravity theories, in which the extra apparent force terms can be written in a power law of radius $r$ or an exponential function in $r$. We have tested three popular modified gravity theories, the Modified Newtonian Dynamics (MOND), the Emergent Gravity (EG), and the Modified Gravity (MOG). In particular, based on the solar system data, we have constrained the parameters involved for two popular general interpolating functions used in MOND. Our results can be generally applied to both of the modified inertia and modified gravity versions of MOND.