论文标题
解耦,lamno $ _3 $中的几何和应变性质:动态相关和单轴应变驱动磁相变变的相互作用
Decoupling the effects of geometry and nature of strain in LaMnO$_3$: Interplay of dynamic correlations and uniaxial strain driving magnetic phase transitions
论文作者
论文摘要
近年来,实验技术取得了巨大进步,以创造单轴菌株。在这些进步的推动下,我们研究了使用Ab-Initio动力学均值理论对单轴菌株对Lamno $ _3 $的影响,并将其与外交系统中发生的双轴菌株相反。我们的方法预测了MN $ 3D $状态的低能子空间,并解决了多障碍问题,我们的方法强调了MN站点的本地动态相关性。在环境压力下,lamno $ _3 $在一个正面晶胞中结晶,带有面内晶格常数$ a <b $,并显示A型抗fiferromagnetic基态。如果我们应用单轴压缩应变,以使面内晶格与晶格常数$ a $变为正方形,我们会发现铁磁绝缘状态。这与使用PBE,PBE+$ u $等各种功能以及HSE等混合功能的各种功能形成了鲜明的对比,HSE都可以预测半金属的铁磁行为。有趣的是,应用单轴拉伸应变,使得面内晶格与较长的晶格常数$ b $变得平方,观察到抗磁性绝缘状态。在压缩应变的情况下,我们将这些结果追溯到Jahn-Teller失真的减少,有利于铁磁状态。在拉伸情况下,这种减少不存在,因此抗磁磁状态得以幸存。我们的研究表明,是菌株(压缩或拉伸)的风味,对Jahn-Teller扭曲的大小而决定性作用,因此是磁态。
Recent years have seen tremendous progress in experimental techniques to create uniaxial strain. Motivated by these advances we investigate the effect of uniaxial strain on LaMnO$_3$ employing ab-initio dynamical mean-field theory, and put it in contrast to biaxial strain that occurs in epitaxial systems. Projecting on the low-energy subspace of Mn $3d$ states, and solving multi-impurity problems, our approach emphasizes on local dynamic correlations at Mn sites. At ambient pressures, LaMnO$_3$ crystallizes in an orthorhombic unit cell, with in-plane lattice constants $a<b$, and shows an A-type antiferromagnetic ground state. If we apply uniaxial compressive strain such that the in-plane lattice becomes square with lattice constant $a$, we find a ferromagnetic insulating state. This is in sharp contrast to DFT results using various functionals like PBE, PBE+$U$, and hybrid functionals like HSE, which all predict a half-metallic ferromagnetic behaviour. Interestingly, applying uniaxial tensile strain, such that the in-plane lattice becomes square with the longer lattice constant $b$, an antiferromagnetic insulating state is observed. We trace back these results to the reduction in Jahn-Teller distortion in the case of compressive strain, favoring a ferromagnetic state. This reduction is absent in the tensile case, and the antiferromagnetic state therefore survives. Our study shows that it is the flavour of the strain (compressive or tensile) which is decisive for the magnitude of Jahn-Teller distortions and, hence, the magnetic state.