论文标题

封闭界面的内侧轴是Lipschitz稳定的,相对于豪斯多夫的距离稳定

The medial axis of closed bounded sets is Lipschitz stable with respect to the Hausdorff distance under ambient diffeomorphisms

论文作者

Kouřimská, Hana Dal Poz, Lieutier, André, Wintraecken, Mathijs

论文摘要

我们证明,闭合集的内侧轴是hausdorff稳定的:让$ \ m athcal {s} \ subseteq \ subseteq \ mathbb {r}^d $ be(固定)封闭集(包含一个边界球体)。考虑$ c^{1,1}的空间$ \ mathbb {r}^d $的空间本身,这使边界球不变。从这个空间(赋予某些Banach规范)到$ \ Mathbb {r}^d $的封闭子集的空间的地图(与Hausdorff距离授予),将diffemormorphism $ f $映射到$ f($ f(\ mathcal)的内侧轴的闭合(\ natecal {s} s})$,是lips lips,lips,这扩展了Chazal和Soufflet的先前稳定性结果,该轴是$ C^2 $歧管的内侧轴的稳定性,$ C^2 $环境差异性。

We prove that the medial axis of closed sets is Hausdorff stable in the following sense: Let $\mathcal{S} \subseteq \mathbb{R}^d$ be (fixed) closed set (that contains a bounding sphere). Consider the space of $C^{1,1}$ diffeomorphisms of $\mathbb{R}^d$ to itself, which keep the bounding sphere invariant. The map from this space of diffeomorphisms (endowed with some Banach norm) to the space of closed subsets of $\mathbb{R}^d$ (endowed with the Hausdorff distance), mapping a diffeomorphism $F$ to the closure of the medial axis of $F(\mathcal{S})$, is Lipschitz. This extends a previous stability result of Chazal and Soufflet on the stability of the medial axis of $C^2$ manifolds under $C^2$ ambient diffeomorphisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源