论文标题

高分辨率的面部外观从两极分化的智能手机图像捕获

High-Res Facial Appearance Capture from Polarized Smartphone Images

论文作者

Azinović, Dejan, Maury, Olivier, Hery, Christophe, Nießner, Mathias, Thies, Justus

论文摘要

我们建议使用基于单个智能手机的新型捕获程序来从RGB图像中进行高质量面部纹理重建的新方法,该方法我们配备了廉价的极化箔。具体来说,我们将手电筒变成偏光光源,并在相机顶部添加极化过滤器。利用这种设置,我们捕获了具有交叉偏振和平行极光的受试者的面孔。对于每个主题,我们使用改良的智能手机在闪光照明下在黑暗环境中记录两个短序列,并使用不同的光两极化。基于这些观察结果,我们使用运动结构重建了面部的明确表面网格。然后,我们在可区分的渲染器中利用摄像头和光共处,以使用分析方法进行优化面部纹理。我们的方法针对高分辨率的正常纹理,弥漫性反照率和镜面反照率优化。我们表明,优化的纹理可用于标准渲染管道中,以合成新颖环境中高质量的照片现实3D数字人类。

We propose a novel method for high-quality facial texture reconstruction from RGB images using a novel capturing routine based on a single smartphone which we equip with an inexpensive polarization foil. Specifically, we turn the flashlight into a polarized light source and add a polarization filter on top of the camera. Leveraging this setup, we capture the face of a subject with cross-polarized and parallel-polarized light. For each subject, we record two short sequences in a dark environment under flash illumination with different light polarization using the modified smartphone. Based on these observations, we reconstruct an explicit surface mesh of the face using structure from motion. We then exploit the camera and light co-location within a differentiable renderer to optimize the facial textures using an analysis-by-synthesis approach. Our method optimizes for high-resolution normal textures, diffuse albedo, and specular albedo using a coarse-to-fine optimization scheme. We show that the optimized textures can be used in a standard rendering pipeline to synthesize high-quality photo-realistic 3D digital humans in novel environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源