论文标题
电场对Bose-Einstein凝结状态超导性的影响
Impact of the electric field on superconductivity in Bose-Einstein Condensation regime
论文作者
论文摘要
在强耦合玻色 - 因斯坦凝结(BEC)方向上,超导体具有两个特征温度:$ t^*$ - 费米昂配对的发作和$ t_ {sc {sc} $ - 超导率的开始,因此$ t_ {sc {sc}} <t^*$。在本文中,我们考虑了用平板几何形状的超导体的时间依赖的金堡 - 兰道理论,并显示出在温度间隔$(t_ {sc},t^*)$中应用电场,库珀浓缩了库珀浓缩,从而增加了超导体的关键温度$ t^e_ sc} sc {sc} $ t _ sc} $。重要的结果是,如果应用适当的电场,则在间隔内任意温度($ t_ {sc},t^*$)是超导体过渡的临界温度。这意味着,如果我们在上述间隔内设置系统的温度并增加了应用的电场,则系统将经历电场引起的过渡到超导体。 我们还显示了$ t^*= t^e_ {sc} $的临界值的存在。这意味着尽管系统处于BEC政权,但 远离BCS,我们可以应用一个将系统移至具有$ t^e_ {sc} = t^*$的状态的电场,这是BCS制度的特征。结果表明,应用的电场实验是识别超导体BEC状态的合适工具。该实验可以确定$ t^*$作为温度,在该温度下,电场bose凝结了库珀对,而在其上方电子屏幕上屏蔽了场,并且无法穿透。
In the strong coupling Bose-Einstein Condensation (BEC) regime the superconductors have two characteristic temperatures: $T^*$- onset of fermion pairing and $T_{sc}$- onset of superconductivity, such that $T_{sc}<T^*$. In the present article, we consider time dependent Ginzburg-Landau theory of superconductors with slab geometry and show that applied electric field, in the temperature interval $(T_{sc},T^*)$, Bose condenses the Cooper pairs thereby increasing the superconductor critical temperature $T^E_{sc}>T_{sc}$. Important consequence is the fact that arbitrary temperature within the interval ($T_{sc},T^*$) is a critical temperature of superconductor transition if an appropriate electric field is applied. This means that if we set the temperature of the system within the above mentioned interval and increase the applied electric field the system undergoes an electric field induced transition to superconductor. We also show the existence of critical value of the applied electric field at which $T^*=T^E_{sc}$. This means that although the system is in BEC regime, away from the BCS one, we can apply an electric field that moves the system to a state with $T^E_{sc}=T^*$, characteristic of BCS regime. The results indicate that applied electric field experiments are a suitable tool to identify the BEC regime of the superconductors. The experiment can determine $T^*$ as a temperature below which the electric field Bose condenses the Cooper pairs, while above it the electrons screen the field and it cannot penetrate.