论文标题
损失成型可以通过EventProp在尖峰神经网络中增强精确的梯度学习
Loss shaping enhances exact gradient learning with Eventprop in spiking neural networks
论文作者
论文摘要
基于事件的机器学习有望在未来的神经形态硬件上进行更节能的AI。在这里,我们调查了如何将最近发现的EventProp算法用于尖峰神经网络中精确梯度的梯度下降,以缩放到具有挑战性的关键字识别基准。我们在GPU增强神经网络框架中实现了EventProp,并将其用于培训Heidelberg数字和尖峰语音命令数据集的尖峰神经网络。我们发现,学习在很大程度上取决于损失功能,并将EventProp扩展到更广泛的损失功能,以实现有效的培训。然后,我们测试了大量数据增强和正规化以及探索不同的网络结构。以及异质和可训练的时间尺度。我们发现,当与两个特定的增强(合适的正规化和一个延迟线输入)结合使用时,具有一个经常性层的EventProp网络在尖峰Heidelberg数字方面实现了最先进的性能,并且在尖峰语音命令上具有良好的准确性。与领先的基于替代级别的SNN训练方法相比,我们的Genn EventProp实现速度更快3倍,使用的内存减少了4倍。这项工作是朝着当前机器学习范例的低功率神经形态替代方案迈出的重要一步。
Event-based machine learning promises more energy-efficient AI on future neuromorphic hardware. Here, we investigate how the recently discovered Eventprop algorithm for gradient descent on exact gradients in spiking neural networks can be scaled up to challenging keyword recognition benchmarks. We implemented Eventprop in the GPU-enhanced Neural Networks framework and used it for training recurrent spiking neural networks on the Spiking Heidelberg Digits and Spiking Speech Commands datasets. We found that learning depended strongly on the loss function and extended Eventprop to a wider class of loss functions to enable effective training. We then tested a large number of data augmentations and regularisations as well as exploring different network structures; and heterogeneous and trainable timescales. We found that when combined with two specific augmentations, the right regularisation and a delay line input, Eventprop networks with one recurrent layer achieved state-of-the-art performance on Spiking Heidelberg Digits and good accuracy on Spiking Speech Commands. In comparison to a leading surrogate-gradient-based SNN training method, our GeNN Eventprop implementation is 3X faster and uses 4X less memory. This work is a significant step towards a low-power neuromorphic alternative to current machine learning paradigms.