论文标题
从图灵模式到2D Brusselator模型中的嵌合体状态
From Turing patterns to chimera states in the 2D Brusselator model
论文作者
论文摘要
Brusselator已被用作自催化反应的原型模型,尤其是Belouzov-Zhabotinsky反应。当在扩散极限处耦合时,Brusselator会经历图灵分叉,从而形成经典的图灵模式,例如在2个空间维度中形成斑点,条纹和螺旋形。在本研究中,我们使用通用的非局部耦合的布鲁塞尔剂,并表明在耦合范围r-> 1(扩散极限)的极限中,恢复了经典的图灵模式,而对于中间耦合范围和适当的参数值奇米尔态奇异固体。这项研究表明,如何调整典型的非线性振荡器的参数,以使耦合系统从空间稳定的图灵结构传递到动态时空嵌合体状态。
The Brusselator has been used as a prototype model for autocatalytic reactions, and in particular for the Belouzov- Zhabotinsky reaction. When coupled at the diffusive limit, the Brusselator undergoes a Turing bifurcation resulting in the formation of classical Turing patterns, such as spots, stripes and spirals in 2 spatial dimensions. In the present study we use generic nonlocally coupled Brusselators and show that in the limit of the coupling range R->1 (diffusive limit), the classical Turing patterns are recovered, while for intermediate coupling ranges and appropriate parameter values chimera states are produced. This study demonstrates how the parameters of a typical nonlinear oscillator can be tuned so that the coupled system passes from spatially stable Turing structures to dynamical spatiotemporal chimera states.