论文标题

具有相同统治和独立数量的图形

Graphs with equal Grundy domination and independence number

论文作者

Bacsó, Gábor, Brešar, Boštjan, Kuenzel, Kirsti, Rall, Douglas F.

论文摘要

Grundy的支配数字,$ {γ_{\ rm gr}}(g)$,$ g $的最大长度是序列$的最大长度(v_1,v_2,v_2,\ ldots,v_k)$ g $中的顶点$不属于任何关闭的邻里$ n [v_j] $的顶点,其中$ j <i $。众所周知,任何图$ g $的Grundy统治数大于或等于上部支配数字$γ(g)$,这又大于或等于独立性数字$α(g)$。在本文中,我们使用$γ(g)= {γ_ {\ rm gr}}}(g)$及其由$α(g)= {γ_ {γ_ {\ rm gr}}(g)$组成的$ g $的研究$ g $的研究。我们表征了所有无孪晶连接图之间的后一类图形,提供了这些图形的许多属性,并证明了Hyperuibes是此类的成员。此外,我们为图$ g $提供了几个必要的条件,其中$γ(g)= {γ_ {\ rm gr}}}}(g)$,并呈现此类图的大家庭。

The Grundy domination number, ${γ_{\rm gr}}(G)$, of a graph $G$ is the maximum length of a sequence $(v_1,v_2,\ldots, v_k)$ of vertices in $G$ such that for every $i\in \{2,\ldots, k\}$, the closed neighborhood $N[v_i]$ contains a vertex that does not belong to any closed neighborhood $N[v_j]$, where $j<i$. It is well known that the Grundy domination number of any graph $G$ is greater than or equal to the upper domination number $Γ(G)$, which is in turn greater than or equal to the independence number $α(G)$. In this paper, we initiate the study of the class of graphs $G$ with $Γ(G)={γ_{\rm gr}}(G)$ and its subclass consisting of graphs $G$ with $α(G)={γ_{\rm gr}}(G)$. We characterize the latter class of graphs among all twin-free connected graphs, provide a number of properties of these graphs, and prove that the hypercubes are members of this class. In addition, we give several necessary conditions for graphs $G$ with $Γ(G)={γ_{\rm gr}}(G)$ and present large families of such graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源