论文标题
银河系的核星星团的星形史
The Star Formation History of the Milky Way's Nuclear Star Cluster
论文作者
论文摘要
我们报告了银河系的核星簇(NSC)的第一个星形形成历史研究,其中包括来自大量恒星金属度测量样本的观察性约束。这些金属度测量是从双子座和VLT的最新调查中获得的,对中央1.5 PC内的770个晚期恒星。这些金属度测量以及光度法和光谱衍生的温度是通过贝叶斯推理方法向前建模的。包括金属度测量值可以提高整体拟合质量,因为现在考虑了以前难以约束的低温红色巨人,并且最佳拟合度偏爱了两个组件模型。主要组件包含93%$ \ pm $ 3%的质量,是金属丰富的($ \ overline {[m/h]} \ sim $ 0.45),并且年龄为5 $^{+3} _ { - 2} $ gyr,这是$ \ sim $ 3 gyr yalk forres fortial(sim $ 3 gyr and field field offient of fircept of fircept of Field(SOL)(SOLAR)(SOLAR)METALLICELITY;这个年轻的时代挑战了共同进化模型,其中NSC和超级黑洞在早期同时形成。次要种群组件具有低金属性($ \叠加{[m/h]} \ sim $ -1.1),并包含$ \ sim $ 7%的$ 7%。次要成分的年龄不确定(0.1-5 Gyr old)。使用估计的参数,我们推断以下NSC恒星残留种群($ \ sim $ 18%的不确定性):1.5 $ \ times $ 10 $^5 $中子星,2.5 $ \ times $ 10 $^5 $^5 $ stall seltar sell ass Black Holes(BHS)和2.2 $ \ times $ \ times $^4 $^4 $^4 $ bh-bh-bh-bh-binaries。与假设太阳金属性的早期预测相比,这些预测导致中子星少的2-4倍,引入了可能的新途径来理解所谓的“缺失脉冲星问题”。最后,我们提出了BH-BH合并率的最新预测(0.01-3 GPC $^{ - 3} $ yr $^{ - 1} $)。
We report the first star formation history study of the Milky Way's nuclear star cluster (NSC) that includes observational constraints from a large sample of stellar metallicity measurements. These metallicity measurements were obtained from recent surveys from Gemini and VLT of 770 late-type stars within the central 1.5 pc. These metallicity measurements, along with photometry and spectroscopically derived temperatures, are forward modeled with a Bayesian inference approach. Including metallicity measurements improves the overall fit quality, as the low-temperature red giants that were previously difficult to constrain are now accounted for, and the best fit favors a two-component model. The dominant component contains 93%$\pm$3% of the mass, is metal-rich ($\overline{[M/H]}\sim$0.45), and has an age of 5$^{+3}_{-2}$ Gyr, which is $\sim$3 Gyr younger than earlier studies with fixed (solar) metallicity; this younger age challenges co-evolutionary models in which the NSC and supermassive black holes formed simultaneously at early times. The minor population component has low metallicity ($\overline{[M/H]}\sim$ -1.1) and contains $\sim$7% of the stellar mass. The age of the minor component is uncertain (0.1 - 5 Gyr old). Using the estimated parameters, we infer the following NSC stellar remnant population (with $\sim$18% uncertainty): 1.5$\times$10$^5$ neutron stars, 2.5$\times$10$^5$ stellar mass black holes (BHs) and 2.2$\times$10$^4$ BH-BH binaries. These predictions result in 2-4 times fewer neutron stars compared to earlier predictions that assume solar metallicity, introducing a possible new path to understand the so-called "missing pulsar problem". Finally, we present updated predictions for the BH-BH merger rates (0.01-3 Gpc$^{-3}$yr$^{-1}$).