论文标题
时间不断发展的照片电离设备(TEPID):一个新颖的平衡气体电离代码
Time Evolving Photo Ionisation Device (TEPID): a novel code for out-of-equilibrium gas ionisation
论文作者
论文摘要
光电离是明亮天体物理来源的气态环境中起作用的主要机制之一。有关气体物理,化学和运动学以及电离源本身的许多信息,可以通过光学光谱来收集。虽然几个公共时间平衡光电离世代码很容易获得,并且可用于在平衡时推断平均气体性能,但随着时间的推移,光电离电模型只是最近才开始可用。当电离源变化的速度比典型的气体平衡时间尺度更快时,需要它们。实际上,使用平衡模型来分析非平衡气体的光谱可能导致结果不准确,并防止对气体密度,物理和几何形状进行稳固的评估。我们介绍了新颖的时间不断发展的光电子化设备(TEPID),该设备可以自吻,可以解决时间不断发展的光电离方程(热和电离平衡),并遵循气体对电离源变化的响应。该代码可以应用于各种天体物理场景,并产生时间分辨的气体吸收光谱以适合数据。为了描述TEPID的主要特征,我们将其应用于两个截然不同的天体物理场景:在活性银河核的X射线光谱中观察到的一个典型的电离吸收器(例如,温暖的吸收剂和UFOS)和伽马射线爆发的环形环境。在这两种情况下,气体能量和电离都在时间,气体密度和距离电离源的距离的函数上变化。时间不断发展的电离导致独特的电离模式,当气体不平衡时,固定代码无法再现。这表明,鉴于Xrism或Athena等上升的高分辨率X射线光谱仪,需要诸如TEPID之类的代码。
Photoionisation is one of the main mechanisms at work in the gaseous environment of bright astrophysical sources. Many information on the gas physics, chemistry and kinematics, as well as on the ionising source itself, can be gathered through optical to X-ray spectroscopy. While several public time equilibrium photoionisation codes are readily available and can be used to infer average gas properties at equilibrium, time-evolving photoionisation models have only very recently started to become available. They are needed when the ionising source varies faster than the typical gas equilibration timescale. Indeed, using equilibrium models to analyse spectra of non-equilibrium gas may lead to inaccurate results and prevents a solid assessment of the gas density, physics and geometry. We present our novel Time-Evolving PhotoIonisation Device (TEPID), which self-consistently solves time evolving photoionisation equations (thermal and ionisation balance) and follows the response of the gas to changes of the ionising source. The code can be applied to a variety of astrophysical scenarios and produces time-resolved gas absorption spectra to fit the data. To describe the main features of TEPID, we apply it to two dramatically different astrophysical scenarios: a typical ionised absorber observed in the X-ray spectra of Active Galactic Nuclei (e.g. Warm Absorbers and UFOs) and the circumburst environment of a Gamma-Ray Burst. In both cases, the gas energy and ionisation balances vary as a function of time, gas density and distance from the ionising source. Time evolving ionisation leads to unique ionisation patterns which cannot be reproduced by stationary codes when the gas is out of equilibrium. This demonstrates the need for codes such as TEPID in view of the up-coming high-resolution X-ray spectrometers onboard missions like XRISM or Athena.